14.4.3: Laterals
- Page ID
- 44687
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)| Flow Rate, Q (gpm) |
Nominal Size (in): 0.5 Inside Pipe Diameter (in): 0.622 |
Nominal Size (in): 0.75 Inside Pipe Diameter (in): 0.824 |
Nominal Size (in): 1.0 Inside Pipe Diameter (in): 1.049 |
Nominal Size (in): 1.5 Inside Pipe Diameter (in): 1.61 |
|---|---|---|---|---|
| 0.5 | 0.13 | 0.03 | ||
| 1.0 | 0.56 | 0.15 | ||
| 1.5 | 1.13 | 0.30 | 0.09 | |
| 2.0 | 1.86 | 0.49 | 0.15 | |
| 2.5 | 2.76 | 0.72 | 0.23 | 0.03 |
| 3.0 | 3.81 | 0.99 | 0.31 | 0.04 |
| 4.0 | 6.38 | 1.64 | 0.51 | 0.07 |
| 5.0 | 9.55 | 2.43 | 0.76 | 0.10 |
| 6.0 | 13.3 | 3.37 | 1.05 | 0.14 |
| 7.0 | 4.45 | 1.38 | 0.18 | |
| 8.0 | 5.67 | 1.76 | 0.22 | |
| 9.0 | 7.02 | 2.17 | 0.28 | |
| 10 | 2.62 | 0.33 | ||
| 15 | 5.47 | 0.68 | ||
| 20 | 9.26 | 1.14 | ||
| 25 | 1.71 |
The flow rate within the lateral decreases as the flow moves past water applicators; thus, the friction loss changes. When the lateral has uniformly spaced and uniformly discharging outlets, the friction loss can be estimated by:
PL = F L Pf
where: PL = pressure loss due to friction for laterals with uniformly spaced and uniformly discharging outlets,
F = multiple outlet reduction factor (Table 8.3),
L = lateral length, and
Pf = pressure loss per unit length of a conveyance pipe without outlets.
For a pipe with no outlets, F = 1.0. There is a slight difference between values of F depending on the distance down the lateral from the manifold to the first outlet. If the spacing between the outlets is s, then the outlet factor is higher when the first outlet is a distance s from the manifold compared to a distance of one-half s for about the first 20 outlets on a lateral. Typical values of F are given in Table 8.3.
There are also minor pressure losses in laterals with emitters caused by flow constrictions for in-line emitters and by barbs for emitters inserted in the tubing. Keller and Bliesner (1990) present a method for estimating losses caused by in-line emitters and emitters with barbed insertions. Their method adds to the effective length of the pipe.
What is the smallest recommended pipe diameter for a polyethylene lateral that is 200 ft long and has an emitter outlet spacing of 2 ft? Each emitter discharges 2 gallons per hour.
Given: L = 200 ft s =2 ft
Emitter discharge = 2 gal/h
Assume medium length insertion barbs
Polyethylene pipe
Find: Smallest pipe diameter recommended
Solution
Number of outlets, n= 200 ft/2 ft= 100 outlets
F = 0.35 (Table 8.3)
Q = n(2 gal/hr)
Q = 100(2 gal/hr) = 3.3 gpm
For d = 0.5 in: Pf = 4.7 psi/100 ft (Interpolated from Table 14.1)
Extra lateral length due to inserted barbs = 30 ft.
For d = 0.75 in: Pf = 1.2 psi/100 ft (Interpolated from Table 14.1)
Extra length due to inserted barbs = 20 ft.
PL = F L Pf (Eq. 14.1)
For d = 0.5 in: PL = 0.35(230 ft)(4.7 psi/100 ft)
PL = 3.78 psi
For d = 0.75 in: PL = 0.35(220 ft)(1.2 psi/100 ft)
PL = 0.92 psi
If the design pressure in the lateral is 15 psi and the lateral is level, a maximum of 3 psi pressure loss would be acceptable if the criteria is that the allowable pressure variation be less that 20% of the average pressure. Thus the 0.75-inch tubing would be necessary.
If microsprayers with a discharge rate of 0.5 gpm at a spacing of 8 ft were substituted for the emitters in Example 14.3, what would be the minimum recommended pipe diameter?
Given: L = 200 ft
Microspray discharge = 0.5 gpm
Assume medium length insertion barbs
Polyethylene pipe
Find: Smallest recommended pipe diameter
Solution
n = 200 ft/8 ft= 25 microsprayers
F = 0.365 (Table 8.3)
Q = n (0.5 gal/hr) = 25(0.5 gal/hr) = 12.5 gpm
For d = 1.0 in: Pf = 4.0 psi/100 ft (Interpolated from Table 14.1)
For d = 1.5 in: Pf = 0.51 psi/100 ft (Interpolated from Table 14.1)
Extra length due to inserted barbs (both tubing sizes) = 5 ft.
PL = F L Pf (Eq. 14.1)
For d = 1.0 in: PL = 0.365(205 ft)(4.0 psi/100 ft)
PL = 2.99 psi
For d = 1.5 in: PL = 0.365(205 ft)(0.51 psi/100 ft)
PL = 0.38 psi
Using the same criteria as Example 14.3, the pressure loss of 2.99 psi in the 1-inch lateral is acceptable but only by a small amount.

