Skip to main content
Workforce LibreTexts

Tutorial - Hide Text (Knowls)

  • Page ID
    4286
  • Introduction

    Hidden Text opens up when a link word is clicked. 

    Why

    This feature can help students pause to think of their own answer before clicking on the link.

    Where you may want hidden text

    • Solutions to odd exercises

    • Answers to some examples

    • Proofs for theorems

    Add Hidden Text

    • Choose EDIT from the top black taskbar.
    • Click at the end of this list below the spot to insert your Hidden Text.
    • Select ELEMENTS.
    • Choose TEMPLATES, then
    • drop down to Template: AddHiddenText
    • INSERT TEMPLATE.
    • Replace Add texts here. Do not delete this text first.  with: This is hidden!!
    • SAVE !!
    • see how it looks

    spot to insert your Hidden Text

     

    Modify an Example to have a Hidden Solution

    • You will hide the Solution to Example 1 below.
    • Choose EDIT from the top black taskbar.
    • Click ABOVE THE WORD Solution IN EXAMPLE 1 BELOW.
    • Select ELEMENTS, Choose TEMPLATES, then drop down to Template: AddHiddenText, INSERT TEMPLATE.
    • Copy the text below Solution and paste it on top of Add texts here. Do not delete this text first. 
    • SAVE!!
    • If it looks good, go back to EDIT mode, rename ANSWER to SOLUTION and erase the original Solution so only your hidden Solution remains.
    • SAVE !!
    • see how it looks

     

    Example \(\PageIndex{1}\)

    Let \(A = \{\mbox{John}, \mbox{Jim}, \mbox{Dave}\}\) and \(B = \{\mbox{Mary}, \mbox{Lucy}\}\). Determine \(A\times B\) and \(B\times A\).

    Answer:

    We find \[\displaylines{ A\times B = \{ (\mbox{John},\mbox{Mary}), (\mbox{John},\mbox{Lucy}), (\mbox{Jim}, \mbox{Mary}), (\mbox{Jim}, \mbox{Lucy}), (\mbox{Dave},\mbox{Mary}), (\mbox{Dave},\mbox{Lucy})\}, \cr B\times A = \{ (\mbox{Mary},\mbox{John}), (\mbox{Mary},\mbox{Jim}), (\mbox{Mary},\mbox{Dave}), (\mbox{Lucy},\mbox{John}), (\mbox{Lucy},\mbox{Jim}), (\mbox{Lucy},\mbox{Dave})\}. \cr}\] In general, \(A\times B \neq B\times A\).

    Solution

    We find \[\displaylines{ A\times B = \{ (\mbox{John},\mbox{Mary}), (\mbox{John},\mbox{Lucy}), (\mbox{Jim}, \mbox{Mary}), (\mbox{Jim}, \mbox{Lucy}), (\mbox{Dave},\mbox{Mary}), (\mbox{Dave},\mbox{Lucy})\}, \cr B\times A = \{ (\mbox{Mary},\mbox{John}), (\mbox{Mary},\mbox{Jim}), (\mbox{Mary},\mbox{Dave}), (\mbox{Lucy},\mbox{John}), (\mbox{Lucy},\mbox{Jim}), (\mbox{Lucy},\mbox{Dave})\}. \cr}\] In general, \(A\times B \neq B\times A\).