Skip to main content
Workforce LibreTexts

1.5: Trigonometry Functions

  • Page ID
    2635
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    When determining the designate angle we can use different ratios of sides.

    • We can use a ratio of the opposite to the hypotenuse.
    • We can use a ratio of the adjacent to the hypotenuse.
    • We can use a ration of the opposite to the adjacent.

    Each ratio has a trigonometric function that helps turn the ratio into an angle. They are:

    • sin θ = opposite/hypotenuse
    • cos θ = adjacent/hypotenuse
    • tan θ = opposite/adjacent

    One way of remembering the ratios are these mnemonics:

    • SOH – Sine is opposite/ hypotenuse
    • CAH – Cosine is adjacent/hypotenuse
    • TOA – Tangent is opposite/ adjacent

    By the way,

    • sin is short for sine
    • cos is short for cosine
    • tan is short for tangent

    Video!

    This video walks through how to determine the angle of a right triangle when you have two sides.

    hqdefault-1.jpg

    A YouTube element has been excluded from this version of the text. You can view it online here: https://pressbooks.bccampus.ca/trigf...tricians/?p=34


    1.5: Trigonometry Functions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Chad Flinn via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.