Skip to main content
Workforce LibreTexts

1.1: Understanding Fractions

  • Page ID
    7081
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Fractions are portions of whole numbers consisting of a numerator (or the top number of the fraction) and the denominator (or the bottom number of the fraction.) They are numbers that represent parts of a whole.

    clipboard_e03be5acbf5d1ff8791f3630c21038094.png
    Figure \(\PageIndex{1}\): Fraction
    Cake with fractions labeled
    Figure \(\PageIndex{2}\): Cake Fractions by Acdx is in the public domain
    clipboard_e9f753bf530b3d4e5e926417cdca0d6ba.png
    Figure \(\PageIndex{3}\): Circle with Proportions by COC OER is licensed under CC BY 4.0

    Fractions are broken down into three classifications:

    • Proper - \(\dfrac{3}{4}\) - Where the numerator is smaller than the denominator
    • Improper - \(\dfrac{5}{2}\) - Where the numerator is larger than the denominator
    • Mixed - \(1\dfrac{6}{7}\) - Where a whole number precedes the fraction

    Exercise 1.1

    Identify the following as a proper fraction, improper fraction, or mixed number. Identify the correct word.

    \(\dfrac{1}{2}\)

    Proper

    Improper

    Mixed

    \(\dfrac{10}{12}\)

    Proper

    Improper

    Mixed

    3. \(10 \dfrac{1}{2}\) Proper Improper Mixed

    \(\dfrac{11}{3}\)

    Proper

    Improper

    Mixed

    \(\dfrac{101}{13}\)

    Proper

    Improper

    Mixed

    \(130 \dfrac{10}{13}\)

    Proper

    Improper

    Mixed

    \(\dfrac{1,000}{1,111}\)

    Proper

    Improper

    Mixed

    \(\dfrac{12}{7}\)

    Proper

    Improper

    Mixed

    \(\dfrac{1}{7}\)

    Proper

    Improper

    Mixed

    \(13 \dfrac{1}{7}\)

    Proper

    Improper

    Mixed


    1.1: Understanding Fractions is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?