1.1: Understanding Fractions
- Page ID
- 7081
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Fractions are portions of whole numbers consisting of a numerator (or the top number of the fraction) and the denominator (or the bottom number of the fraction.) They are numbers that represent parts of a whole.


Fractions are broken down into three classifications:
- Proper - \(\dfrac{3}{4}\) - Where the numerator is smaller than the denominator
- Improper - \(\dfrac{5}{2}\) - Where the numerator is larger than the denominator
- Mixed - \(1\dfrac{6}{7}\) - Where a whole number precedes the fraction
Exercise 1.1
Identify the following as a proper fraction, improper fraction, or mixed number. Identify the correct word.
|
\(\dfrac{1}{2}\) |
Proper |
Improper |
Mixed |
|
\(\dfrac{10}{12}\) |
Proper |
Improper |
Mixed |
3. | \(10 \dfrac{1}{2}\) | Proper | Improper | Mixed |
|
\(\dfrac{11}{3}\) |
Proper |
Improper |
Mixed |
|
\(\dfrac{101}{13}\) |
Proper |
Improper |
Mixed |
|
\(130 \dfrac{10}{13}\) |
Proper |
Improper |
Mixed |
|
\(\dfrac{1,000}{1,111}\) |
Proper |
Improper |
Mixed |
|
\(\dfrac{12}{7}\) |
Proper |
Improper |
Mixed |
|
\(\dfrac{1}{7}\) |
Proper |
Improper |
Mixed |
|
\(13 \dfrac{1}{7}\) |
Proper |
Improper |
Mixed |