# 1.1: Understanding Fractions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Fractions are portions of whole numbers consisting of a numerator (or the top number of the fraction) and the denominator (or the bottom number of the fraction.) They are numbers that represent parts of a whole.

Fractions are broken down into three classifications:

• Proper - $$\dfrac{3}{4}$$ - Where the numerator is smaller than the denominator
• Improper - $$\dfrac{5}{2}$$ - Where the numerator is larger than the denominator
• Mixed - $$1\dfrac{6}{7}$$ - Where a whole number precedes the fraction

## Exercise 1.1

Identify the following as a proper fraction, improper fraction, or mixed number. Identify the correct word.

 $$\dfrac{1}{2}$$ Proper Improper Mixed $$\dfrac{10}{12}$$ Proper Improper Mixed 3. $$10 \dfrac{1}{2}$$ Proper Improper Mixed $$\dfrac{11}{3}$$ Proper Improper Mixed $$\dfrac{101}{13}$$ Proper Improper Mixed $$130 \dfrac{10}{13}$$ Proper Improper Mixed $$\dfrac{1,000}{1,111}$$ Proper Improper Mixed $$\dfrac{12}{7}$$ Proper Improper Mixed $$\dfrac{1}{7}$$ Proper Improper Mixed $$13 \dfrac{1}{7}$$ Proper Improper Mixed

1.1: Understanding Fractions is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.