Skip to main content
Workforce LibreTexts

6.9: References

  • Page ID
    44427
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Cassel, D. K. (1984). Irrigation scheduling I. Crop and soil parameters. Crops Soils (Feb.), 16-20.

    Chavez, J. L., Torres-Rua, A. F., Woldt, W. E., Zhang, H., Robertson, C. C., Marek, G. W., Wang, D., Heeren, D. M., Taghvaeian, S., & Neale, C. M. U. (2020). A decade of unmanned aerial systems in irrigated agriculture in the Western U.S. Appl. Eng. Agric., 36(4), 423-436.

    Dorrenbos, J., & Kassam, A. H. (1979). Yield response to water. FAO Irrigation and Drainage Paper. 33, 1-193. Rome, Italy: United Nations FAO.

    Dorrenbos, J., & Pruitt, W. J. (1977). Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper. 24, 1-144. Rome, Italy: United Nations FAO.

    English, M. J., Musick, J. T., & Murtz, V. V. (1990). Deficit irrigation (Ch. 17). In G. J. Hoffman, T. A. Howell, & K. H. Solomon (Eds.), Management of farm irrigation systems. St. Joseph, MI: ASAE.

    Evett, S. R., O'Shaughnessy, S. A., Andrade, M. A., Kustas, W. P., Anderson, M. C., Schomberg, H. S., & Thompson, A. (2020). Precision agriculture and irrigation: Current U.S. perspectives. Trans. ASABE, 63(1), 57- 67.

    Fischbach, P., & Somerhalder, B. (1973). Programmed soil moisture depletion. NebGuide G73-58. Nebraska Cooperative Ext. Service, University of Nebraska-Lincoln.

    Irmak, S., Haman, D. Z., & Bastug, R. (2000). Determination of crop water stress index for irrigation timing and yield estimation of corn. Agron. J., 92(6), 1221-1227.

    Irmak, S., Payero, J., VanDeWalle, B., Rees, J., Zoubek, G., Martin, D., Kranz, W., Eisenhauer, D., & Leininger, D. (2016). Principles and operational characteristics of Watermark granular matrix sensor to measure soil water status and its practical applications for irrigation management in various soil textures. EC 783. University of Nebraska-Lincoln Ext.

    ITRC. (2019). Irrigation Consumer Bill of Rights: Soil and plant moisture monitoring systems. ITRC Report No. R 19-004. San Luis Obispo, CA: Irrigation Training and Research Center, California Polytechnic State University.

    Jackson, R. D. (1982). Canopy temperature and crop water stress. In D. Hillel (Ed.), Advances in irrigation (Vol. 1, pp. 43-85). New York, NY: Academic Press.

    Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter Jr., P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resour. Res., 17(4), 1133-1138.

    Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. J. Exp. Bot., 55(407), 2427-2436.

    Kranz, W. L., Irmak, S., Martin, D. L., Shaver, T. M., & van Donk, S. J. (2014). Variable rate application of irrigation water with center pivots. University of Nebraska-Lincoln Ext. Circular EC2000.

    Lo, T., Heeren, D. M., Martin, D. L., Mateos, L., Luck, J. D., & Eisenhauer, D. E. (2016). Pumpage reduction by using variable-rate irrigation to mine undepleted soil water. Trans. ASABE, 59(5), 1285-1298.

    Lo, T., Rudnick, D. R., Ge, Y., Heeren, D. M., Irmak, S., Barker, J. B., Qiao, X., & Shaver, T. M. (2018). Ground-based thermal sensing of field crops and its relevance to irrigation management. NebGuide G2301, University of Nebraska-Lincoln Ext.

    Martin, D. L., Stegman, E. C., & Fererer, E. (1990). Irrigation scheduling principles. In G. J. Hoffman, T. A. Howell, & K. H. Soloman (Eds.), Management of farm irrigation systems. ASAE Monograph. St. Joseph, MI: ASAE.

    Melvin, S. R., & Martin, D. L. (2018). Irrigation scheduling strategies when using soil water data. EC 3036. University of Nebraska-Lincoln Ext.

    Melvin, S. R., & Yonts, C. D. (2009). Irrigation scheduling: Checkbook method. EC 709. University of NebraskaLincoln Ext.

    Miller, K. A., Luck, J. D., Heeren, D. M., Lo, T., Martin, D. L., & Barker, J. B. (2018). A geospatial variable rate irrigation control scenario evaluation methodology based on mining root zone available water capacity. Precis. Agric., 19(4), 666-683.

    Peters, R. T., & Evett, S. R. (2008). Automation of a center pivot using the temperature-time-threshold method of irrigation scheduling. J. Irrig. Drain. Eng., 134(3), 286-291.

    Singh, J., Heeren, D. M., Rudnick, D. R., Woldt, W. E., Bai, G., Ge, Y., & Luck, J. D. (2020). Soil structure and texture effects on the precision of soil water content measurements with a capacitance- based electromagnetic sensor. Trans. ASABE, 63(1), 141-152.

    Skaggs, R. W., Fausey, N. R., & Nolte, B. H. (1981). Water management model evaluation for North Central Ohio. Trans. ASAE, 24(4), 922-928.

    Stegman, E. C. (1983). Irrigation scheduling: Applied timing criteria. In D. Hillel (Ed.), Advances in irrigation (Vol. 2, pp. 1-30). New York, NY: Academic Press.

    Trout, T. J., Howell, T. A., English, M. J., & Martin, D. L. (2020). Deficit irrigation strategies for the Western U.S. Trans. ASABE, 63(6), 1813-1825.

    Turner, N. C. (1990). Plant water relations and irrigation management. Agric. Water Manag., 17(1), 59-73.

    Turner, N. C., & Burch., G. J. (1983). The role of water in plants. In I. D. Teare, & M. M. Peet (Eds.), Crop water relations (pp. 73-125). New York, NY: John Wiley & Sons.

    Wanjura, D. F., Upchurch, D. R., & Mahan, J. R. (1995). Control of irrigation scheduling using temperature-time thresholds. Trans. ASAE, 38(2), 403-409.


    6.9: References is shared under a CC BY-NC-ND 4.0 license and was authored, remixed, and/or curated by LibreTexts.