Skip to main content
Workforce LibreTexts

6.1: Definitions

  • Page ID
    20044
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In the Water Industry, often it will be important to calculate perimeter, circumference, area, volume, or surface area (lateral area) of various objects. Let’s start by defining each geometric calculation.

    Definitions

    Perimeter: The linear measurement or distance around the outside of a two-dimensional object such as a square, rectangle, triangle, etc. The units are expressed as a linear measurement such as inches, feet, yards, miles, millimeters, centimeters, meters, kilometers, etc.

    \[P=length\,\, of\,\, side\,\, 1+length\,\, of\,\, side\,\, 2+length\,\, of\,\, side\,\, 3+length\,\, of\,\, side\,\, 4+\dots\]

    Circumference: The linear measurement around the outside of a circle. The units are expressed as a linear measurement such as inches, feet, yards, miles, millimeters, centimeters, meters, kilometers, etc. NOTE: Circumference is the name we use to represent the perimeter of a circle.

    \[C=\pi (diameter) \,\, \text{or} \,\, C=2\pi (radius)\]

    Area (or Surface Area or Lateral Area): The measurement of the amount of space inside a 2-dimensional object or on the surface of a 3-dimensional object. The units are expressed as square linear units such as square inches (in\({}^{2}\)), square meters (m\({}^{2}\)), square feet (ft\({}^{2}\)), etc.

    The formula for area depends on the object, so let’s start with the area of some common objects:

    Geometric Measurement Formula Shape
    Area of a rectangle \(A=(length)(width)\) clipboard_ee87067e0613a52fd31730654bd8aece2.png
    Area of a triangle \(A=\frac{1}{2}(base)(height)\) clipboard_e0a6b57f34da224494242019182b0371d.png
    Area of a circle

    \(A=\pi(radius)^2\)

    or

    \( A=(0.785)(diameter)^2 \)

    clipboard_ef88aa8a5e6dade100f26a2718a52a213.png
    Area of a trapezoid \(A=\frac{1}{2}(base \,\,1+base\,\, 2)(height) \) clipboard_ea4c46e2d297e30c0e2b5b64c40be6a8f.png

    Volume: The measurement of the amount of space inside a 3-dimensional object. The units are expressed as cubic linear units such as cubic inches (in\({}^{3}\)), cubic meters (m\({}^{3}\)), cubic feet (ft\({}^{3}\)), etc.

    The general formula for volume is: \(Volume=(Area\,\, of\,\, a\,\, surface)(height\,\, or\,\, length)\)

    The formula for volume depends on the object, so let’s start with the volume of some common objects:

    Geometric Measurement Formula Shape

    Volume of a Rectangular Box or Prism

    \(V = (length)(width)(height)\) clipboard_eeaa2da3930aecb8b74d7935823bae4e2.png

    Volume of a Cylinder

    \(V=\pi(radius)^2(height)\)

    or

    \(V = (0.785)(diameter)^2(height)\)

    clipboard_e3ef7ae0838c6c035fe23fbd422ce763e.png

    Volume of a Cone

    \(V = \frac{1}{3} \pi(radius)^2(height) \)

    or

    \(V = \frac{1}{3} (0.785)(diameter)^2(height)\)

    clipboard_ecd87b4aad34b810b95c8435931685a0a.png

    Volume of a Sphere

    \(V = \frac{4}{3} \pi(radius)^3\)

    or

    \(V=\frac{2}{3}(0.785)(diameter)^3\)

    clipboard_e8f649c1afdac78f9eda0f159e4011941.png

    Volume of a Triangular Prism

    \(V=(Area\,\, of\,\, the\,\, triangular\,\, surface)(depth)\)

    or

    \(V=\frac{1}{2} (base)(height)(depth \,\, or \,\, width)\)

    clipboard_ed458a82f84261a64cf3c68d804fa26b4.png

    Volume of a Trapezoidal Prism

    \(V = (Area \,\, of\,\, the \,\, trapezoidal \,\, surface)(depth)\)

    or

    \(V=\frac{1}{2}(base \,\, 1+base\,\, 2)(height)(depth \,\, or\,\, width) \)

    clipboard_e3d208ee701b4e4cdd0800914bc8eea3c.png

    This page titled 6.1: Definitions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Kelly Brooks.

    • Was this article helpful?