Skip to main content
Workforce LibreTexts

6.3.3.4: Future of Information Systems

  • Page ID
    19642
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Future of Information Systems

    Quantum computer

    Today’s computers use bits as data units. A bit value can only be either 0 or 1, as we discussed in Chapter 2. Quantum computers use qubit, which can represent a combination of both 0 and 1 simultaneously, leveraging the principles of quantum physics. This is a game-changer for computing and will disrupt all aspects of information technology. The benefits include a significant speed increase in calculations that will enable solutions for unsolvable problems today. However, there are many technical problems to be solved yet since all the IS elements will need to be re-imagined. Google announced the first real proof of a working quantum computer in 2019 (Menard, et al., 2020). Menard et al. also indicated that the industries that would benefit from this new computer type would be industries with complex problems to solve, such as pharmaceutical, autonomous vehicles, cybersecurity, or intense mathematical modeling such as Finance, Energy. For a full report, please visit McKinsey.com.

    Blockchain

    A blockchain is a set of blocks or a list of records linked using cryptography to record a transaction and track assets in a network. Anything of value can be considered an asset and be tracked. Examples include a house, cash, patents, a brand. Once a transaction is recorded, it cannot be changed retroactively. Hence, it is considered highly secured.

    Blockchain has many applications, but bitcoin is mostly associated with it because it was the first application using blockchain technology. Sometimes bitcoin and blockchain are mistakenly meant to be the same thing, but they are not.

    Bitcoin is digital money or a cryptocurrency. It is an open-source application built using blockchain technology. It is meant to eliminate the need for a central bank since people can directly send bitcoins. Simply put, bitcoin keeps track of a list of who sends how many bitcoins to another person. One difference with today’s money is that a bitcoin's value fluctuates since it works like a stock. Anyone can buy different bitcoin cryptocurrencies or other cryptocurrencies on bitcoin exchanges such as Coinbase. Bitcoin and other cryptocurrencies are accepted by a few organizations such as Wikimedia, Microsoft, Wholefoods. However, bitcoin’s adoption is still uncertain. If the adoption by major companies is accelerated, then banking locally and globally will change significantly.

    Some early businesses have begun to use blockchain as part of their operations. Kroger uses IBM blockchain to trace food from the farms to its shelves to respond to food recalls quickly (IBM.com.) Amazon Managed Blockchain is a fully managed service that makes it easy to create and manage scalable blockchain networks.

    Artificial Intelligence (AI)

    Artificial intelligence (AI) comprises many technologies to duplicate the functions of the human brain. It has been in research since the 1950s and has seen an ebb and flow of interest. To understand and duplicate a human brain, AI is a complex interdisciplinary effort that involves multiple fields such as computer science, linguistics, mathematics, neuroscience, biology, philosophy, and psychology. One approach is to organize the technologies as below, and commercial solutions have been introduced:

    Consumer products such as the smart vacuum iRobot Roomba are now widely available. The adoption of certain types of robots has accelerated in some industries due to the pandemic: Spot, the dog-like robot from Boston dynamics, is used to patrol for social distancing.

    Image of Sophia, First Robot Citizen at the AI for Good Global Summit 2018.
    Figure \(\PageIndex{1}\): Sophia, First Robot Citizen at the AI for Good Global Summit 2018. Image by ITU Pictures is licensed under CC BY 2.0

    The goal of 100% duplicating a human brain has not been achieved yet since no AI systems have passed the Alan Turing test known as Turing Test to answer the question 'Can a machine think?" Alan is widely considered a founder of the AI field and devises a test to a machine's ability to show the equivalent intelligent behavior to that humans. The test does not look for correct answers but rather answers closely resemble those a human would give.

    440px-Alan_Turing_Aged_16.jpg
    Figure \(\PageIndex{2}\): Alan Turing Aged 16. Image is licensed Public Domain

    Even though AI has not been to duplicate a human brain yet, its advances have introduced many AI-based technologies such as AI bot, robotics in many industries. AI progress has contributed to producing many practical business information systems that we discussed throughout this book such as, voice recognition, cameras, robots, autonomous cars, etc. It has also raised concerns over how ethical is the development of some AI technologies as we discussed in previous chapters.

    Advances in artificial intelligence depend on the continuous effort to collect vast amounts of data, information, and knowledge, advances in hardware, sophisticated methods to analyze both unconnected and connected large datasets to make inferences to create new knowledge, supported by secured, fast networks.

    References

    Boston Dynamics’ dog-like robot Spot is being used on coronavirus social distancing patrol (2020). Retrieved December 13, 2020, from https://www.cnbc.com/2020/05/15/boston-dynamics-dog-like-robot-spot-used-on-social-distancing-patrol.html.

    Changing your idea of what robots can do. Retrieved December 13, 2020, from https://www.bostondynamics.com/.

    Honda's Brain-Machine Interface: controlling robots by thoughts alone (2009). Retrieved December 11, 2020, from https://newatlas.com/honda-asimo-brain-machine-interface-mind-control/11379/#:~:text=Honda%20Research%20Institute%2C%20Japan%2C%20has,using%20nothing%20more%20than%20thought.&text=Then%2C%20the%20doors%20will%20be,and%20act%20directly%20upon%20them.

    Kroger uses IBM Blockchain technology for farm to fork food traceability. Retrieved December 11, 2020, from https://mediacenter.ibm.com/media/Kroger+uses+IBM+Blockchain+technology+for+farm+to+fork+food+traceability/0_527q9xfy.

    Menard A., Ostojic I., and Patel M. (2020, February 6). A game plan for quantum computing. Retrieved December 10, 2020, from https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/a-game-plan-for-quantum-computing.

    The smarter AI assistant for business. Retrieved December 11, 2020, from https://www.ibm.com/cloud/watson-assistant-2/