# 1.5: Dividing Fractions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

When dividing fractions you invert (flip upside down) the fraction on the right side of the equation (the dividend). Then it becomes a multiplication problem. Invert and multiply!

Example $$\PageIndex{1}$$

$$\dfrac{2}{5} \div \dfrac{1}{2} \rightarrow \dfrac{2}{5} \times \dfrac{2}{1}=\dfrac{4}{5}$$

Example $$\PageIndex{2}$$

$$\dfrac {\dfrac{4}{9}}{\dfrac{8}{9}}$$

This example reads $$\dfrac{4}{9}$$ divided by $$\dfrac{8}{9}$$.

However, after you “invert and multiply,” it becomes:

$\dfrac{4}{9} \times \dfrac{9}{8} \rightarrow \dfrac{1}{1} \times \dfrac{1}{2}=\dfrac{1}{2} \nonumber$

After inverting the fraction, the same rules apply as previously mentioned when multiplying fractions. You need to change mixed numbers into improper fractions; you can cross cancel, and always remember to reduce if necessary.

Example $$\PageIndex{3}$$

$$\dfrac{3}{8} \div \dfrac{12}{6} \rightarrow \dfrac{3}{8} \times \dfrac{6}{12} \rightarrow \dfrac{\not{3}}{\not {8}} \times \dfrac{\not {6}}{\not {12}}=\dfrac{1}{4} \times \dfrac{3}{4}=\dfrac{3}{16}$$

In the Example $$\PageIndex{3}$$ above the 3 divided into itself once and into the 12 four times. Similarly, 2 divided into 6, three times and into 8, four times. Can you see a different way to cross cancel?

If the dividend is a whole number write it as a fraction before inverting. Always remember to cross cancel and reduce if necessary.

Example $$\PageIndex{4}$$

$$\dfrac{5}{8} \div 10 \rightarrow \dfrac{5}{8} \div \dfrac{10}{1} \rightarrow \dfrac{5}{8} \times \dfrac{1}{10} \rightarrow \dfrac{\not{5}}{8} \times \dfrac{1}{\not {10}} \rightarrow \dfrac{1}{8} \times \dfrac{1}{2}=\dfrac{1}{16}$$

## Exercise 1.5

Divide the following and reduce if necessary.

1. $$\dfrac{1}{2} \div \dfrac{2}{4}$$
2. $$\dfrac{5}{22} \div 7 \dfrac{2}{4}$$
3. $$\dfrac{6}{8} \div \dfrac{9}{12}$$
4. $$3 \dfrac{1}{3} \div 10$$
5. $$5 \dfrac{1}{4} \div 8 \dfrac{1}{2}$$
6. $$\dfrac{8}{16} \div \dfrac{16}{8}$$
7. $$4 \div 3 \dfrac{2}{3}$$
8. $$\dfrac{2}{5} \div 5 \dfrac{6}{9}$$
9. $$\dfrac{9}{13} \div 9$$
10. $$\dfrac{11}{22} \div \dfrac{1}{2}$$
11. $$2 \dfrac{9}{20} \div 5 \dfrac{2}{5}$$
12. $$3 \dfrac{1}{2} \div 9 \dfrac{1}{2}$$
13. $$5 \div 25$$
14. $$\dfrac{10}{3} \div \dfrac{1}{6}$$
15. $$\dfrac{13}{33} \div \dfrac{39}{3}$$
16. $$100 \dfrac{1}{2} \div 10 \dfrac{5}{6}$$

1.5: Dividing Fractions is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.