Skip to main content
Workforce LibreTexts

1.2.2.12: Other Input Devices

  • Page ID
    39376
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Other input devices

    A magnetic card reader reads the magnetized stripe on the back of plastic credit-card size cards. These cards need to be pre-recorded following certain standards. Although the cards can hold only a tiny amount of information, they are very popular for access (door) control and financial transactions (ATMs and point-of-sale terminals).

    Magnetic ink character recognition (MICR) uses a special ink (containing magnetizable elements) and a distinct font type. It is used mainly in the banking sector for the processing of cheques.

    Touch-tone devices can use a voice telephone to contact computer-based switchboards or enter information directly into remote computers. Many corporate telephone help-lines rely on the customer pressing the touch-tone telephone buttons to route his/her call to the correct operator by selecting through a menu of possible options. South African banks also enable their clients to perform a number of banking transactions via telephone.

    Digital cameras allow you to make pictures of physical objects directly in a digital, i.e. computer-readable, format. Relatively low-cost digital still picture cameras are now available that capture images directly on electronic disk or RAM media instead of the traditional film. Apart from being very compact, most of these digital cameras can also interface directly with personal computers and are thus becoming a popular tool to capture pictures for e-mailing or loading on the world-wide Web.

    Biometric devices are used to verify personal identity based on fingerprints, iris or retinal scanning, hand geometry, facial characteristics etc. A scanning device is used to capture key measurements and compare them against a database of previously stored information. This type of authentication is becoming increasingly important in the control of physical access.

    Finally, voice input devices are coming of age. Voice-recognition has recently made a strong entry into the market with the availability of low-cost systems that work surprisingly well with today’s personal computers. These systems allow for voice control of most standard applications (including the operating system). With voice control, the computer recognizes a very limited number (50 or less) of frequently used, programmable system commands (“save”, “exit”, “print”…) from a variety of users. In fact, these systems are not only used for the interface of computer programs; they are also slowly making an appearance in consumer appliances, novelty items and even motor cars!

    Much more difficult to achieve than voice control, is true voice dictation used to dictate e.g. a letter to your word processor. The difficulty is that the computer must not only distinguish between many tens of thousands of possible words, but it must also recognize the almost unnoticeable breaks in between words, different accents and intonations. Therefore, voice dictation typically requires a user to train the voice recognition software by reading standard texts aloud. Nevertheless, for personal purposes and slow typists, voice recognition is rapidly becoming a viable alternative to the keyboard.

    Applying an agricultural lens to these various input and identification technologies can help illustrate their practical uses and innovations in farming and agriculture:

     

    1. Magnetic Card Readers:

    Magnetic Card Readers in Agriculture: Imagine magnetic card readers as specialized equipment used to manage access to secure areas on a farm, such as barns, greenhouses, or equipment storage. Just as magnetic card readers help control access or financial transactions, similar technology might be used to regulate entry to different sections of a farm or to track equipment usage and employee access. For example, a magnetic card system could be used for access control to a high-tech greenhouse or to secure gates for different sections of a large farm.

     

    2. Magnetic Ink Character Recognition (MICR):

    MICR in Agriculture: MICR technology is used in banking to read checks, and it can be likened to specialized labeling systems in agriculture. For instance, MICR-like technology could be used to process and sort agricultural products based on coded labels or tags. Imagine a system that reads coded labels on bags of seed or livestock identification tags, helping with inventory management and traceability, ensuring that each product can be tracked throughout the supply chain.

     

    3. Touch-Tone Devices:

    Touch-Tone Devices in Agriculture: Touch-tone devices are used for routing calls and entering information. In farming, similar technology could be used for managing automated irrigation systems or farm management systems. For example, a touch-tone system could allow farmers to interact with a remote irrigation controller, entering commands to adjust watering schedules or access information about soil moisture levels from a remote location.

     

    4. Digital Cameras:

    Digital Cameras in Agriculture: Digital cameras are like advanced tools for documenting and analyzing crops, livestock, or farm conditions. Farmers can use digital cameras to capture high-resolution images of plant health, livestock conditions, or machinery performance. These images can be used for monitoring crop growth, diagnosing plant diseases, or documenting field conditions for reports or insurance claims. With direct computer interfacing, digital cameras simplify the process of analyzing and sharing agricultural data.

     

    5. Biometric Devices:

    Biometric Devices in Agriculture: Biometric devices can be seen as the advanced security measures on a farm. Similar to how biometric systems verify identity using fingerprints or facial recognition, farms could use biometric technology to ensure secure access to valuable equipment, control entry to sensitive areas, or track the identities of farm workers. For example, biometric systems could manage access to high-tech greenhouses or sensitive livestock facilities, enhancing security and operational efficiency.

     

    6. Voice Input Devices:

    Voice Input Devices in Agriculture: Voice input devices can be likened to modern farm management tools that use voice commands for control and automation. Imagine a farmer using voice commands to operate irrigation systems, control machinery, or input data into a farm management system. Just as voice input devices are becoming more common in personal computing and consumer appliances, they could enhance hands-free operations on the farm, allowing for more efficient multitasking and data entry.

    Voice Dictation in Agriculture: Voice dictation can be compared to voice-controlled field notes or automated reporting systems. Farmers could use voice dictation to record observations, update crop management records, or create reports without having to type manually. This would be particularly useful in situations where hands-free operation is beneficial, such as while inspecting fields or handling livestock.

     

    In Summary:

    In agriculture, each technology provides a way to enhance efficiency and accuracy, much like how specialized farming tools and equipment serve different needs on the farm. Magnetic card readers and MICR could streamline access and inventory management, touch-tone devices could simplify remote control of systems, digital cameras aid in documentation and analysis, biometric devices enhance security, and voice input and dictation technologies facilitate easier data entry and control. Each of these technologies, like modern agricultural tools, helps optimize farm operations and improve overall productivity.


    1.2.2.12: Other Input Devices is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?